Copied to
clipboard

G = C21.C32order 189 = 33·7

5th non-split extension by C21 of C32 acting via C32/C3=C3

metabelian, supersoluble, monomial, 3-hyperelementary

Aliases: C21.5C32, C733- 1+2, C7⋊C93C3, C32.(C7⋊C3), (C3×C21).3C3, C3.5(C3×C7⋊C3), SmallGroup(189,7)

Series: Derived Chief Lower central Upper central

C1C21 — C21.C32
C1C7C21C7⋊C9 — C21.C32
C7C21 — C21.C32
C1C3C32

Generators and relations for C21.C32
 G = < a,b,c | a21=c3=1, b3=a7, bab-1=a4, ac=ca, cbc-1=a7b >

3C3
7C9
7C9
7C9
3C21
73- 1+2

Character table of C21.C32

 class 13A3B3C3D7A7B9A9B9C9D9E9F21A21B21C21D21E21F21G21H21I21J21K21L21M21N21O21P
 size 11133332121212121213333333333333333
ρ111111111111111111111111111111    trivial
ρ21111111ζ3ζ32ζ32ζ3ζ3ζ321111111111111111    linear of order 3
ρ3111ζ32ζ31111ζ32ζ32ζ3ζ3ζ32ζ32ζ321ζ3ζ3ζ3ζ3ζ3ζ3111ζ32ζ32ζ32    linear of order 3
ρ4111ζ3ζ3211ζ3ζ321ζ321ζ3ζ3ζ3ζ31ζ32ζ32ζ32ζ32ζ32ζ32111ζ3ζ3ζ3    linear of order 3
ρ5111ζ32ζ311ζ32ζ31ζ31ζ32ζ32ζ32ζ321ζ3ζ3ζ3ζ3ζ3ζ3111ζ32ζ32ζ32    linear of order 3
ρ6111ζ3ζ3211ζ32ζ3ζ321ζ31ζ3ζ3ζ31ζ32ζ32ζ32ζ32ζ32ζ32111ζ3ζ3ζ3    linear of order 3
ρ7111ζ32ζ311ζ3ζ32ζ31ζ321ζ32ζ32ζ321ζ3ζ3ζ3ζ3ζ3ζ3111ζ32ζ32ζ32    linear of order 3
ρ8111ζ3ζ321111ζ3ζ3ζ32ζ32ζ3ζ3ζ31ζ32ζ32ζ32ζ32ζ32ζ32111ζ3ζ3ζ3    linear of order 3
ρ91111111ζ32ζ3ζ3ζ32ζ32ζ31111111111111111    linear of order 3
ρ103-3+3-3/2-3-3-3/20033000000000-3+3-3/2000000-3-3-3/2-3-3-3/2-3+3-3/2000    complex lifted from 3- 1+2
ρ113-3-3-3/2-3+3-3/20033000000000-3-3-3/2000000-3+3-3/2-3+3-3/2-3-3-3/2000    complex lifted from 3- 1+2
ρ1233333-1+-7/2-1--7/2000000-1+-7/2-1--7/2-1--7/2-1+-7/2-1+-7/2-1+-7/2-1--7/2-1+-7/2-1--7/2-1--7/2-1+-7/2-1--7/2-1--7/2-1+-7/2-1+-7/2-1--7/2    complex lifted from C7⋊C3
ρ1333333-1--7/2-1+-7/2000000-1--7/2-1+-7/2-1+-7/2-1--7/2-1--7/2-1--7/2-1+-7/2-1--7/2-1+-7/2-1+-7/2-1--7/2-1+-7/2-1+-7/2-1--7/2-1--7/2-1+-7/2    complex lifted from C7⋊C3
ρ143-3+3-3/2-3-3-3/200-1--7/2-1+-7/2000000ζ3ζ763ζ757573ζ3ζ743ζ77273ζ743ζ72747ζ3ζ763ζ753ζ73ζ32ζ7532ζ73767332ζ7632ζ73767532ζ7232ζ77472ζ32ζ7632ζ757573ζ32ζ7432ζ772732ζ7432ζ72747ζ32ζ7632ζ7532ζ73ζ32ζ7432ζ7232ζ7ζ3ζ743ζ723ζ7ζ3ζ753ζ7376733ζ763ζ7376753ζ723ζ77472    complex faithful
ρ153-3+3-3/2-3-3-3/200-1+-7/2-1--7/20000003ζ723ζ774723ζ763ζ737675ζ3ζ753ζ737673ζ3ζ743ζ723ζ732ζ7432ζ72747ζ32ζ7432ζ7727ζ32ζ7632ζ75757332ζ7232ζ7747232ζ7632ζ737675ζ32ζ7532ζ737673ζ32ζ7432ζ7232ζ7ζ32ζ7632ζ7532ζ73ζ3ζ763ζ753ζ733ζ743ζ72747ζ3ζ743ζ7727ζ3ζ763ζ757573    complex faithful
ρ16333-3+3-3/2-3-3-3/2-1--7/2-1+-7/2000000ζ3ζ763ζ753ζ73ζ3ζ743ζ723ζ7ζ3ζ743ζ723ζ7-1--7/2ζ32ζ7632ζ7532ζ73ζ32ζ7632ζ7532ζ73ζ32ζ7432ζ7232ζ7ζ32ζ7632ζ7532ζ73ζ32ζ7432ζ7232ζ7ζ32ζ7432ζ7232ζ7-1--7/2-1+-7/2-1+-7/2ζ3ζ763ζ753ζ73ζ3ζ763ζ753ζ73ζ3ζ743ζ723ζ7    complex lifted from C3×C7⋊C3
ρ173-3+3-3/2-3-3-3/200-1--7/2-1+-7/2000000ζ3ζ753ζ7376733ζ723ζ77472ζ3ζ743ζ7727ζ3ζ763ζ753ζ7332ζ7632ζ737675ζ32ζ7632ζ75757332ζ7432ζ72747ζ32ζ7532ζ73767332ζ7232ζ77472ζ32ζ7432ζ7727ζ32ζ7632ζ7532ζ73ζ32ζ7432ζ7232ζ7ζ3ζ743ζ723ζ73ζ763ζ737675ζ3ζ763ζ7575733ζ743ζ72747    complex faithful
ρ183-3-3-3/2-3+3-3/200-1--7/2-1+-7/200000032ζ7632ζ73767532ζ7432ζ7274732ζ7232ζ77472ζ32ζ7632ζ7532ζ73ζ3ζ763ζ757573ζ3ζ753ζ737673ζ3ζ743ζ77273ζ763ζ7376753ζ743ζ727473ζ723ζ77472ζ3ζ763ζ753ζ73ζ3ζ743ζ723ζ7ζ32ζ7432ζ7232ζ7ζ32ζ7632ζ757573ζ32ζ7532ζ737673ζ32ζ7432ζ7727    complex faithful
ρ193-3-3-3/2-3+3-3/200-1+-7/2-1--7/2000000ζ32ζ7432ζ7727ζ32ζ7532ζ737673ζ32ζ7632ζ757573ζ32ζ7432ζ7232ζ73ζ723ζ774723ζ743ζ727473ζ763ζ737675ζ3ζ743ζ7727ζ3ζ753ζ737673ζ3ζ763ζ757573ζ3ζ743ζ723ζ7ζ3ζ763ζ753ζ73ζ32ζ7632ζ7532ζ7332ζ7232ζ7747232ζ7432ζ7274732ζ7632ζ737675    complex faithful
ρ20333-3-3-3/2-3+3-3/2-1--7/2-1+-7/2000000ζ32ζ7632ζ7532ζ73ζ32ζ7432ζ7232ζ7ζ32ζ7432ζ7232ζ7-1--7/2ζ3ζ763ζ753ζ73ζ3ζ763ζ753ζ73ζ3ζ743ζ723ζ7ζ3ζ763ζ753ζ73ζ3ζ743ζ723ζ7ζ3ζ743ζ723ζ7-1--7/2-1+-7/2-1+-7/2ζ32ζ7632ζ7532ζ73ζ32ζ7632ζ7532ζ73ζ32ζ7432ζ7232ζ7    complex lifted from C3×C7⋊C3
ρ213-3+3-3/2-3-3-3/200-1+-7/2-1--7/20000003ζ743ζ72747ζ3ζ763ζ7575733ζ763ζ737675ζ3ζ743ζ723ζ7ζ32ζ7432ζ772732ζ7232ζ77472ζ32ζ7532ζ73767332ζ7432ζ72747ζ32ζ7632ζ75757332ζ7632ζ737675ζ32ζ7432ζ7232ζ7ζ32ζ7632ζ7532ζ73ζ3ζ763ζ753ζ73ζ3ζ743ζ77273ζ723ζ77472ζ3ζ753ζ737673    complex faithful
ρ223-3-3-3/2-3+3-3/200-1--7/2-1+-7/2000000ζ32ζ7532ζ73767332ζ7232ζ77472ζ32ζ7432ζ7727ζ32ζ7632ζ7532ζ733ζ763ζ737675ζ3ζ763ζ7575733ζ743ζ72747ζ3ζ753ζ7376733ζ723ζ77472ζ3ζ743ζ7727ζ3ζ763ζ753ζ73ζ3ζ743ζ723ζ7ζ32ζ7432ζ7232ζ732ζ7632ζ737675ζ32ζ7632ζ75757332ζ7432ζ72747    complex faithful
ρ233-3-3-3/2-3+3-3/200-1+-7/2-1--7/200000032ζ7432ζ72747ζ32ζ7632ζ75757332ζ7632ζ737675ζ32ζ7432ζ7232ζ7ζ3ζ743ζ77273ζ723ζ77472ζ3ζ753ζ7376733ζ743ζ72747ζ3ζ763ζ7575733ζ763ζ737675ζ3ζ743ζ723ζ7ζ3ζ763ζ753ζ73ζ32ζ7632ζ7532ζ73ζ32ζ7432ζ772732ζ7232ζ77472ζ32ζ7532ζ737673    complex faithful
ρ243-3-3-3/2-3+3-3/200-1--7/2-1+-7/2000000ζ32ζ7632ζ757573ζ32ζ7432ζ772732ζ7432ζ72747ζ32ζ7632ζ7532ζ73ζ3ζ753ζ7376733ζ763ζ7376753ζ723ζ77472ζ3ζ763ζ757573ζ3ζ743ζ77273ζ743ζ72747ζ3ζ763ζ753ζ73ζ3ζ743ζ723ζ7ζ32ζ7432ζ7232ζ7ζ32ζ7532ζ73767332ζ7632ζ73767532ζ7232ζ77472    complex faithful
ρ253-3+3-3/2-3-3-3/200-1--7/2-1+-7/20000003ζ763ζ7376753ζ743ζ727473ζ723ζ77472ζ3ζ763ζ753ζ73ζ32ζ7632ζ757573ζ32ζ7532ζ737673ζ32ζ7432ζ772732ζ7632ζ73767532ζ7432ζ7274732ζ7232ζ77472ζ32ζ7632ζ7532ζ73ζ32ζ7432ζ7232ζ7ζ3ζ743ζ723ζ7ζ3ζ763ζ757573ζ3ζ753ζ737673ζ3ζ743ζ7727    complex faithful
ρ26333-3+3-3/2-3-3-3/2-1+-7/2-1--7/2000000ζ3ζ743ζ723ζ7ζ3ζ763ζ753ζ73ζ3ζ763ζ753ζ73-1+-7/2ζ32ζ7432ζ7232ζ7ζ32ζ7432ζ7232ζ7ζ32ζ7632ζ7532ζ73ζ32ζ7432ζ7232ζ7ζ32ζ7632ζ7532ζ73ζ32ζ7632ζ7532ζ73-1+-7/2-1--7/2-1--7/2ζ3ζ743ζ723ζ7ζ3ζ743ζ723ζ7ζ3ζ763ζ753ζ73    complex lifted from C3×C7⋊C3
ρ273-3-3-3/2-3+3-3/200-1+-7/2-1--7/200000032ζ7232ζ7747232ζ7632ζ737675ζ32ζ7532ζ737673ζ32ζ7432ζ7232ζ73ζ743ζ72747ζ3ζ743ζ7727ζ3ζ763ζ7575733ζ723ζ774723ζ763ζ737675ζ3ζ753ζ737673ζ3ζ743ζ723ζ7ζ3ζ763ζ753ζ73ζ32ζ7632ζ7532ζ7332ζ7432ζ72747ζ32ζ7432ζ7727ζ32ζ7632ζ757573    complex faithful
ρ28333-3-3-3/2-3+3-3/2-1+-7/2-1--7/2000000ζ32ζ7432ζ7232ζ7ζ32ζ7632ζ7532ζ73ζ32ζ7632ζ7532ζ73-1+-7/2ζ3ζ743ζ723ζ7ζ3ζ743ζ723ζ7ζ3ζ763ζ753ζ73ζ3ζ743ζ723ζ7ζ3ζ763ζ753ζ73ζ3ζ763ζ753ζ73-1+-7/2-1--7/2-1--7/2ζ32ζ7432ζ7232ζ7ζ32ζ7432ζ7232ζ7ζ32ζ7632ζ7532ζ73    complex lifted from C3×C7⋊C3
ρ293-3+3-3/2-3-3-3/200-1+-7/2-1--7/2000000ζ3ζ743ζ7727ζ3ζ753ζ737673ζ3ζ763ζ757573ζ3ζ743ζ723ζ732ζ7232ζ7747232ζ7432ζ7274732ζ7632ζ737675ζ32ζ7432ζ7727ζ32ζ7532ζ737673ζ32ζ7632ζ757573ζ32ζ7432ζ7232ζ7ζ32ζ7632ζ7532ζ73ζ3ζ763ζ753ζ733ζ723ζ774723ζ743ζ727473ζ763ζ737675    complex faithful

Smallest permutation representation of C21.C32
On 63 points
Generators in S63
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21)(22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42)(43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63)
(1 57 39 8 43 25 15 50 32)(2 52 22 9 59 29 16 45 36)(3 47 26 10 54 33 17 61 40)(4 63 30 11 49 37 18 56 23)(5 58 34 12 44 41 19 51 27)(6 53 38 13 60 24 20 46 31)(7 48 42 14 55 28 21 62 35)
(22 29 36)(23 30 37)(24 31 38)(25 32 39)(26 33 40)(27 34 41)(28 35 42)(43 57 50)(44 58 51)(45 59 52)(46 60 53)(47 61 54)(48 62 55)(49 63 56)

G:=sub<Sym(63)| (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63), (1,57,39,8,43,25,15,50,32)(2,52,22,9,59,29,16,45,36)(3,47,26,10,54,33,17,61,40)(4,63,30,11,49,37,18,56,23)(5,58,34,12,44,41,19,51,27)(6,53,38,13,60,24,20,46,31)(7,48,42,14,55,28,21,62,35), (22,29,36)(23,30,37)(24,31,38)(25,32,39)(26,33,40)(27,34,41)(28,35,42)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56)>;

G:=Group( (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21)(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42)(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63), (1,57,39,8,43,25,15,50,32)(2,52,22,9,59,29,16,45,36)(3,47,26,10,54,33,17,61,40)(4,63,30,11,49,37,18,56,23)(5,58,34,12,44,41,19,51,27)(6,53,38,13,60,24,20,46,31)(7,48,42,14,55,28,21,62,35), (22,29,36)(23,30,37)(24,31,38)(25,32,39)(26,33,40)(27,34,41)(28,35,42)(43,57,50)(44,58,51)(45,59,52)(46,60,53)(47,61,54)(48,62,55)(49,63,56) );

G=PermutationGroup([[(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21),(22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42),(43,44,45,46,47,48,49,50,51,52,53,54,55,56,57,58,59,60,61,62,63)], [(1,57,39,8,43,25,15,50,32),(2,52,22,9,59,29,16,45,36),(3,47,26,10,54,33,17,61,40),(4,63,30,11,49,37,18,56,23),(5,58,34,12,44,41,19,51,27),(6,53,38,13,60,24,20,46,31),(7,48,42,14,55,28,21,62,35)], [(22,29,36),(23,30,37),(24,31,38),(25,32,39),(26,33,40),(27,34,41),(28,35,42),(43,57,50),(44,58,51),(45,59,52),(46,60,53),(47,61,54),(48,62,55),(49,63,56)]])

C21.C32 is a maximal subgroup of   C32.F7

Matrix representation of C21.C32 in GL3(𝔽127) generated by

2500
97730
110100
,
84180
1431
2380
,
100
84190
20107
G:=sub<GL(3,GF(127))| [25,97,11,0,73,0,0,0,100],[84,1,2,18,43,38,0,1,0],[1,84,2,0,19,0,0,0,107] >;

C21.C32 in GAP, Magma, Sage, TeX

C_{21}.C_3^2
% in TeX

G:=Group("C21.C3^2");
// GroupNames label

G:=SmallGroup(189,7);
// by ID

G=gap.SmallGroup(189,7);
# by ID

G:=PCGroup([4,-3,-3,-3,-7,36,97,867]);
// Polycyclic

G:=Group<a,b,c|a^21=c^3=1,b^3=a^7,b*a*b^-1=a^4,a*c=c*a,c*b*c^-1=a^7*b>;
// generators/relations

Export

Subgroup lattice of C21.C32 in TeX
Character table of C21.C32 in TeX

׿
×
𝔽